Investimento, teoria e recomendações metodológicas para seu tratamento
Palavras-chave:
investimento matemático, apresentação e solução de problemas, recomendações metodológicas.Resumo
Na pesquisa, a teoria da inversão é apresentada de forma lógica e dedutiva. Para isso, são apresentadas as principais definições e os teoremas que caracterizam a transformação, incluindo teoremas que constituem recursos complementares de valor para a solução de problemas de Geometria Plana nas modalidades de cálculo. Além disso, são incluídas demonstrações e construções auxiliares, bem como recomendações metodológicas para o tratamento desse conteúdo com o objetivo de obter maior desenvolvimento e flexibilidade de pensamento no processo de ensino-aprendizagem da Matemática. Essas recomendações metodológicas têm como objetivo fazer com que os alunos construam a maior parte do conhecimento, que será usado posteriormente na apresentação e resolução de problemas.
Referências
Aldazabal Melgar, Omar Franco, Vértiz Osores, Ricardo Iván, Zorrilla Tarazona, Eduardo, Aldazábal Melgar, Liliana Hilda, & Guevara Duarez, Manuel Felipe. (2021). Software GeoGebra en la mejora de capacidades resolutivas de problemas de figuras geométricas bidimensionales en universitarios. Propósitos y Representaciones, 9(1). https://dx.doi.org/10.20511/pyr2021.v9n1.1040
Badillo-Torres, V., & Rodríguez-Abitia, G. (2021). Plataforma Virtual para el aprendizaje de la Geometría Analítica. Revista Internacional De Pedagogía E Innovación Educativa, 2(1), pp. 123–138. https://doi.org/10.51660/ripie.v2i1.94
Carmenates Barrios, Osmany Alfredo, & Tarrío Mesa, Kirya. (2019). El pensamiento lógico, psicológico y social: su contribución a la resolución de problemas geométricos. Conrado, 15(69), pp. 362-369. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442019000400362&lng=es&tlng=es.
Figueroa, L. G. (2017). Una transformación inspirada en la inversión respecto a la elipse. http://hdl.handle.net/20.500.12209/9761.
González, Fernando (2020). La matemática y el arte en el proceso de enseñanza aprendizaje de la geometría. En Balda, Paola; Parra, Mónica Marcela; Sostenes, Horacio (Eds.), Acta Latinoamericana de Matemática Educativa, pp. 368-379. México, DF: Comité Latinoamericano de Matemática Educativa.
Lugo de Acosta, C. A. (2021). Efectos de la aplicación del software GeoGebra para la enseñanza – aprendizaje semi-presencial de la Geometría Analítica en el nivel universitario. INNOVA UNTREF, 1(3). http://revistas.untref.edu.ar/index.php/innova/article/view/979
Molina, A. B., Arenas Díaz, J. E., & Pineda Ballesteros, E. (2019). El aprendizaje de la geometría con Geogebra, un enfoque de aprendizaje por problemas. Revista Docencia Universitaria, 20(2), pp. 55–67. https://revistas.uis.edu.co/index.php/revistadocencia/article/view/10522
Oliver, M.; Valdez, G.; Vecino, S.; Astiz, M. (2018). Complementando la formación geométrica de los futuros profesores. En Lestón, Patricia (Ed.), Actas de la XII Conferencia argentina de educación matemática, pp. 1-8. http://funes.uniandes.edu.co/19553/
Roanes Lozano, Eugenio (1993). Automatización e implementación de algunos problemas algebráicos y geométricos. Tesis (Doctoral), Facultad de Informática (UPM). https://doi.org/10.20868/UPM.thesis.10113.
Rojas, R. (2020). Introducción del GeoGebra en el proceso de enseñanza–aprendizaje de Geometría a docentes en formación. Revista Caribeña de Investigación Educativa, 4(1). http://52.225.194.101/index.php/recie/article/view/174
Urrego Gómez, Y. (2021). Propuesta metodológica para la enseñanza-aprendizaje de la geometría mediada por los conceptos de área y volumen a partir del estudio de los polígonos regulares en el gado sexto de la I. E. Dinamarca. Universidad Nacional de Colombia.
Downloads
Publicado
Como Citar
Edição
Seção
ARK
Licença
Copyright (c) 2023 Diógenes Feliciano González Hernández, Miguel Eduardo González Díaz, Nolbert González Hernández
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.