THE REFLECTIONS FOR THE USE OF INTUITION FROM THE CONTRIBUTIONS OF EFRAIM FISCHBEIN
REFLEXIONES PARA EL USO DE LA INTUICIÓN
Keywords:
Intuición, Efraim Fischbein, Categorías del Razonamiento Intuitivo, Educación MatemáticaAbstract
This work addresses the concept of intuition, as well as elucidates the manifestation of different categories of intuitive reasoning, which are analyzed from a theoretical perspective, aiming at the possibilities of its identification and contribution to the educational area. Thus, the objective of this paper is to present intuition and its categorization, from the perspective of Efraim Fischbein, as a theory to be considered, seeking a more comprehensive view of its mechanisms and using research evidence from his works, as a way of to support and expand the interpretation and use of intuitive reasoning aimed at the field of Mathematics. To this end, bibliographic research was adopted as a methodology for this work, in which a content analysis is carried out, seeking to substantiate a reflective investigation on some of the works by the aforementioned author. Finally, in the field of Mathematics Education, it is important to develop in students the ability to distinguish between perception, intuitive feelings, intuitive beliefs and formally held convictions, developing appropriate interpretations in the field of intuition, together with the evolution of formal reasoning structures logical.
References
Alves, F. (2011). Aplicações da Sequência Fedathi na promoção das categorias do raciocínio intuitivo no Cálculo a Várias Variáveis. Tese de Doutorado Universidade Federal do Ceará, Fortaleza, Ceará, Brasil. http://www.teses.ufc.br/tde_biblioteca/login.php
Alves, F. (2016). Categorias intuitivas para o ensino do Cálculo: descrição e implicações para o seu ensino. Revista Brasileira de Ensino de Ciências e Tecnologia, 9(3), 1-21. http://dx.doi.org/10.3895/rbect.v9n3.1538
Alves, F. y Borges, H. (2009). A intuição na Sequência Fedathi: uma aplicação no Ensino Médio. Conexões, Ciência e Tecnologia, 3(1), 30-41. https://doi.org/10.21439/conexoes.v3i1.126
Alves, F. y Borges, H. (2011). A contribuição de Efraim Fischbein para a Educação Matemática e a formação do professor. Conexões, Ciência e Tecnologia, 5(1), 38-54. https://doi.org/10.21439/conexoes.v5i1.441
Bachelard, G. (1984). O novo espírito científico. In: Os Pensadores. São Paulo: Abril
Cultural.
Bardin, L. (2011). Análise de conteúdo. São Paulo: Edições 70.
Fischbein, E. (1987a). Intuition in Science and Mathematics: an educational approach. Netherlands: D. Reidel Public, Mathematics Educational Library. DOI: 10.1007/0-306-47237-6
Fischbein, E. (1987b). The intuitive dimension of Mathematical Reasoning. Em: T. A. Romberg y D. M. Stewart, The Monitoring of School Mathematics: Background Papers. (pp. 47-70). Madison: Wisconsin Center for Education Research.
Fischbein, E. (1993). The Theory of Figural Concepts. Educational Studies in Mathematics, 24(2), 139-162. https://doi.org/10.1007/BF01273689
Fischbein, E. (1999). Intuitions and Schemata in Mathematical Reasoning. Educational Studies in Mathematics, 38(11), 11-50. https://doi.org/10.1023/A:1003488222875
Fischbein, E. y Gazit, A. (1984). Does the Teaching of Probability improve probabilistic intuitions? Educational Studies in Mathematics, 15(17), 1-24. https://doi.org/10.1007/BF00380436
Nasser, L. (2013). O papel da abstração no pensamento matemático avançado. Em: Flores, Rebeca, Acta Latinoamericana de Matemática Educativa. (pp. 891-897). México: Comité Latinoamericano de Matemática Educativa. http://funes.uniandes.edu.co/4175/1/NasserOpapelALME2013.pdf
Poincaré, Henri. (1899). La logique et l’intuition dans la Science Mathématique. L´enseignement Mathématique, 1, 157-162. https://www.e-periodica.ch/cntmng?pid=ens-001:1899:1::57
Poincaré, H. (1988). A ciência e a hipótese. Brasília: Editora da UnB.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
ARK
License
Copyright (c) 2021 Renata Teófilo de Sousa, Francisco Régis Vieira Alves, Maria José Araújo Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.