Procedure for preventing disability in paediatric patients assisted by generative artificial intelligence
Keywords:
Prevention, disability, paediatric patient, Artificial Intelligence, procedure.Abstract
This article presents an innovative procedure called “IA-PrevDis,” designed to prevent the progression of disabilities in pediatric patients through the use of generative artificial intelligence (GAI). A quasi-experimental, field-based observational study was conducted, employing methods of analysis, synthesis, induction, deduction, quasi-experimentation, and statistical testing. The approach integrates GAI tools such as Grok, ChatGPT, Canva, DeepSeek, among others, to generate personalized educational and preventive plans tailored to local contexts such as Banes, Holguín, Cuba. It was validated through a quasi-experimental study with 50 pediatric children (ages 6–12) with mild disabilities, divided into intervention and control groups in the municipality of Banes, Holguín, Cuba. Results, analyzed using the Mann–Whitney U test, showed significant improvements in functional skills and a reduction in the risk of worsening conditions. Educational and ethical implications, as well as applications in low-resource settings, are discussed, aligned with the principles of inclusive pedagogy.
Downloads
References
Abraham, A. (2023). The effects of artificial intelligence on implementors' fidelity of interventions for children with autism. Journal of Developmental and Physical Disabilities, 35, 123-145. https://doi.org/10.1007/s10882-023-09937-1
Alonso, L. A., Cordero, W. y Cruz, M. (2024). La evaluación por portafolios en la asignatura de Medicina Natural y Tradicional. Revista Didáctica y Educación 15(3), 23–41. https://revistas.ult.edu.cu/index.php/didascalia/article/view/1893
Alonso, L. A., Vidal, L. E.y Vidal, A. (2024). Aprendizaje profesional móvil (m-Learning) en estudiantes universitarios basado en proyectos. Revista Cubana de Educación Superior, 43(3), 69–82. https://revistas.uh.cu/rces/article/view/8312
Alonso, L. A., Cruz, M. A.y Olaya, J. J. (2020). Dimensiones del proceso de enseñanza – aprendizaje para la formación profesional. Luz, 19(2), 17-29. https://luz.uho.edu.cu/index.php/luz/article/view/1032
Bolduc, V. (2024). Promises, pitfalls, and clinical applications of artificial intelligence in pediatrics. Journal of Medical Internet Research, 26. https://doi.org/10.2196/49022
Chen, M., Decary, S., Oskoui, M., & Bolduc, V. (2021). Artificial intelligence in rehabilitation targeting the participation of children and youth with disabilities: Scoping review. JMIR Rehabilitation and Assistive Technologies, 8(4), e25745. https://doi.org/10.2196/25745
Finkenflugel, H. (2014). The impact of hospital-based and community based models of cerebral palsy rehabilitation: A quasi-experimental study. BMC Pediatrics, 14, 301. https://doi.org/10.1186/s12887-014-0301-8
Garg, A., & Sharma, V. (2020). AI benefits children with impairments across devices. Education and Information Technologies. https://www.scopus.com/record/display.uri?eid
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación (5ta ed.). EDAMSA Impresiones. http://www.esup.edu.pe/descargas/dep_investigacion/.pdf
Kraft, C. (2024). How pediatricians use AI tools to speed diagnosis, help kids. American Medical Association. https://www.ama-assn.org/practice-management/digital-health/how-pediatricians-use-ai-tools-speed-diagnosis-help-kids
Liuy. (2024). Applied artificial intelligence for global child health: A narrative review. PLOS Digital Health, 3(8). https://doi.org/10.1371/journal.pdig.0000583
MINSAP. (2024). Estadísticas de salud infantil en Cuba. Ministerio de Salud Pública de Cuba. https://www.minsap.gob.cu
OMS. (2023). World report on disability. https://www.who.int/publications/i/item/
Patel, V., & Shah, N. (2025). How artificial intelligence can promote inclusive health. JAMA Pediatrics. Advance online publication. https://doi.org/10.1001/jamapediatrics.2025.1331
Qiny., & Wang, Z. (2024). Generative AI in the context of assistive technologies: Trends, challenges, and future directions. Image and Vision Computing. https://doi.org/10.1016/j.imavis.2024.4529
Suresh, S. (2025). Artificial intelligence in pediatric health care. American Academy of Pediatrics. https://www.aap.org/en/artificial-intelligence-in-pediatric-health-care/
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7
UNICEF. (2023). Generative AI: Risks and opportunities for children. https://www.unicef.org/innocenti/generative-ai-risks-and-opportunities-children
xAI. (2025). Grok 3: Una herramienta de Inteligencia Artificial Generativa para la investigación médica. https://x.ai/grok
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
ARK
License
Copyright (c) 2025 Luis Enrique Vidal Gámez, Anisleidy Vidal Rodríguez, Darian Elena Grass González

This work is licensed under a Creative Commons Attribution 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.









































