Intuition and mathematical reasoning in Didactics of Mathematics

Authors

  • Renata Teófilo de Sousa Instituto Federal de Educação Ciência e Tecnologia do Estado do Ceará - IFCE
  • Francisco Régis Vieira Alves Instituto Federal de Educación, Ciencia y Tecnología de Ceará,Instituto Federal do Ceará image/svg+xml
  • Helena Maria Barros de Campos Universidade de Trás-os-Montes e Alto Douro

Keywords:

Didactics of Mathematics, Mathematical reasoning, Intuition, Theory of Didactic Situations

Abstract

This work brings a theoretical discussion on intuition and mathematical reasoning from the perspective of the Didactics of Mathematics, in addition to elucidating the possibilities of manifestation of different levels of intuitive reasoning, aiming at the possibilities of its identification and contribution to the educational area. The objective of this article is to present the possibility of integration between intuition and mathematical reasoning, seeking to improve the teaching perspective for its practice, considering the influence of intuition in the construction of mathematical reasoning and in its learning. The methodology used was bibliographic research of a basic and exploratory nature, based on the analysis of works that address intuition and mathematical reasoning at different levels. As a result, we propose a discussion that relates the levels of reasoning within the Theory of Didactic Situations, from the perspective of Brousseau and Gibel (2005) and the categorization of intuition presented by Efraim Fischbein (1987), looking for similarities and convergences between these studies. Finally, it is reinforced that in Mathematics it is important to develop in students the ability to distinguish between perception, intuitive feelings, intuitive beliefs and formally held convictions, developing adequate interpretations in the field of intuition, along with the evolution of formal reasoning structures.

Author Biographies

Renata Teófilo de Sousa, Instituto Federal de Educação Ciência e Tecnologia do Estado do Ceará - IFCE

Máster en Enseñanza de Ciencias y Matemáticas por el Instituto Federal de Educación, Ciencia y Tecnología de Ceará – IFCE campus Fortaleza. Especialista en Enseñanza de las Matemáticas (UVA y UFC), Didáctica y Metodologías Activas en el Aprendizaje y MBA en Gestión Escolar (UniAmérica). Docente en la Secretaría de Educación Básica del Estado de Ceará.

Francisco Régis Vieira Alves, Instituto Federal de Educación, Ciencia y Tecnología de Ceará,Instituto Federal do Ceará

Doctorado en Educación por la Universidad Federal de Ceará, Beca de Productividad CNPQ – PQ2. Profesor titular del Programa de Posgrado en Enseñanza de las Ciencias y las Matemáticas del Instituto Federal de Educación, Ciencia y Tecnología de Ceará, Brasil. Coordinador académico del Doctorado en red RENOEN, polo IFCE.

Helena Maria Barros de Campos, Universidade de Trás-os-Montes e Alto Douro

Doctorado en Matemáticas, con Especialidad en Topología y Geometría por la UNED -Madrid (España). Investigadora del Centro de Investigación en Didáctica y Tecnología en la Formación de Formadores del CIDTFF (Universidad de Aveiro). Profesora Asistente del Departamento de Matemáticas de la UTAD.

References

Artigue, M. (1988). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281-308.

Bachelard, G. (1996). A formação do espírito científico: contribuição para uma psicanálise do conhecimento. Contraponto Editora.

Blattberg, R. C. y Hoch, S. J. (1990). Database Models and Managerial Intuition: 50% Model + 50% Manager. Management Science, 36(8), 887-899.

Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. In W. Vanhamme y J. Vanhamme. (Eds.). La problématique et l’enseignement de la mathématique. Comptes rendus de la XXVIIIe rencontre organisée par la Commission Internationale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques, Louvain-la-neuve, pp. 101-117.

Brousseau, G. (1986). Théorisation des phénomènes d´enseignement de mathématiques. (Thèse d´État et Sciences). Université de Bordeaux I.

Brousseau, G. (1996). Os diferentes papéis do professor. In C. Parra y I. Saiz. (Eds.). Didática da Matemática: reflexões psicopedagógicas. Artes Médicas.

Brousseau, G. (2008). Introdução ao estudo das situações didáticas: conteúdos e métodos de ensino. Ática.

Brousseau, G. y Gibel, P. (2005). Didactical handling of students’ reasoning processes in problems solving situations. In C. Laborde, M. J. Perrín-Glorian and A. Sierpinska. (Eds.). Beyond the Apparent Banality of the Mathematics Classroom. Springer, pp. 13-58.

Chevallard, Y. (1991). La Transposition didactique. La Pensée Sauvage Éditions.

Epstein, S. (1994). Integration of the cognitive and the psychodynamic unconscious. American Psychologist, 49(8), 709-724.

Fischbein, E. (1987). Intuition in Science and Mathematics: an educational approach. Mathematics Educational Library.

Fischbein, E. (1992). The psychological nature of the concepts. In H. Mansfield, N. A. Pateman and N. Bednarz (Eds.). Mathematics for tomorrow's young children: international perspectives on curriculum. Papers from 7th International Congress on Mathematical Education, Quebec, Canadá. Springer, pp. 102-119.

Fischbein, E. (1993). The Theory of Figural Concepts. Educational Studies in Mathematics, 24(2), 139-162.

Fischbein, E. (1999). Intuitions and Schemata in Mathematical Reasoning. Educational Studies in Mathematics, 38(11), 11-50.

Gamoneda, A. y González, F. (2018). Idea súbita. Ensayos sobre epifanía creativa. Abada.

Gibel, P. (2015). Mise en œuvre d’un modèle d’analyse des raisonnements en classe de mathématiques à l’école primaire. Éducation Didactique, 9(2), 51-72.

Grande, A. L. y Silva, B. A. (2013). Resolução de questões relacionadas ao cálculo e o uso da intuição e do rigor. Educação Matemática Pesquisa, 2(1), 27-38.

Hadamard, J. (1945). An essay on the Psychology of Invention in the Mathematical Field. Princeton University Press.

Kidron, I. (2011). Tacit models, treasured intuitions and the discrete - continuous interplay. Educational Studies in Mathematics, 78(1), 109-126.

Lieberman, M. D. (2000). Intuition: A Social Cognitive Neuroscience Approach. Psychological Bulletin, 126(1), 109-137.

Margolinas, C. (2005). Essai de généalogie en didactique des mathématiques. Revue suisse des sciences de l’éducation, 27(3), 343-360.

Margolinas, C. (2015). Situations, savoirs et connaissances…comme lieux de rencontre? Formation et pratiques d’enseignement en questions, 2(19), 31-39.

Moreira, M. A. y Rizzatti, I. M. (2020). Pesquisa em ensino. Revista Internacional de Pesquisa em Didática das Ciências e Matemática, 1, 1-15.

Otte, M. (1997). Analysis and synthesis in mathematics from the perspective of Charles S. Peirce’s philosophy. In M. Otte and M. Panza (Eds.). Analysis and synthesis in mathematics: History and Philosophy. Kluwer Academic Publishers, 327-364.

Pais, L. C. (1996). Intuição, experiência e teoria geométrica. Zetetiké, 6. https://doi.org/10.20396/zet.v4i6.8646739

Poincaré, H. (1899). La logique et l’intuition dans la Science Mathématique. L´enseignement Mathématique, 1, 157-162.

Poincaré, H. (1900). Du rôle de l'intuition et de la logique en mathématiques. In: Compte-rendu du deuxième Congrès international des mathématiciens tenu à Paris, 115-130.

Poincaré, H. (1904). L'enseignement des sciences mathématiques et des sciences physiques. Musée pédagogique, Paris. Publications du Musée pédagogique, 6, Imprimerie Nationale, 1-28.

Poincaré, H. (1908). L'invention mathématique. Bulletin de l'Institut Général de Psychologie, 8è année, numéro 3, 175-196.

Pretz, J. E., Naples, A. J. y Sternberg, R. J. (2003). Recognizing, Defining, and Representing Problems. In J. E. Davidson and R. J. Sternberg (Eds.). The psychology of problem solving. Cambridge University Press, 3-30.

Schooler, J. W. y Melcher, J. (1995). The ineffability of insight. In S. Smith, T. Ward and R. Finke (Eds.). The creative cognition approach, Cambridge, MA: MIT Press, 97-133.

Ul-Haq, S. (2015). Intuition and creativity. Lahore University of Management Sciences. https://doi.org/10.13140/RG.2.1.4641.3289

Published

2023-11-23

How to Cite

Teófilo de Sousa, R., Régis Vieira Alves, F., & Maria Barros de Campos, H. . (2023). Intuition and mathematical reasoning in Didactics of Mathematics . Didáctica Y Educación ISSN 2224-2643, 14(5), 170–199. Retrieved from https://revistas.ult.edu.cu/index.php/didascalia/article/view/1751

Conference Proceedings Volume

Section

Artículos

ARK