Concurso Canguru de Matemática, GeoGebra e Educação Inclusiva: experiência didática baseada em problemas de olimpíadas

Autores

  • Paulo Vitor da Silva Santiago Federal University of Ceará (UFC)
  • Renata Teófilo de Sousa Federal Institute of Education, Science and Technology of Ceará (IFCE)
  • Francisco Régis Vieira Alves Federal Institute of Education, Science and Technology of Ceará (IFCE)

Palavras-chave:

geogebra, engenharia didática, concurso canguru de matemática, problemas das olimpíadas de matemática

Resumo

Este artigo apresenta uma experiência de ensino que incentiva a adesão ao uso de Problemas Olímpicos em sala de aula, visando o aprendizado e a inclusão de surdos. No caso particular deste trabalho, sugerimos duas afirmações presentes nas questões do Concurso Canguru de Matemática Brasil 2023. O objetivo deste trabalho é apresentar uma experiência de ensino sobre os temas porcentagem e área de figuras planas associadas à Geometria, através de dois problemas do Canguru Math Competition com a contribuição do GeoGebra. Para isso, utilizamos a Engenharia Didática como metodologia de pesquisa. As situações didáticas foram elaboradas com base na Teoria das Situações Didáticas e a partir do conceito de Situação Didática Olímpica e foram estruturadas com o GeoGebra. A associação dos Problemas Olímpicos ao GeoGebra possibilitou aos alunos a construção de conhecimento, a partir da percepção visual e manipulação do software, bem como a inclusão do aluno surdo, proporcionando-lhe o desenvolvimento do conhecimento matemático. Assim, os resultados obtidos foram positivos, além de proporcionar aos leitores uma reflexão sobre o ensino de matemática, a utilização de problemas olímpicos e softwares para seu ensino, bem como a inclusão de alunos surdos e sua aprendizagem matemática.

Downloads

Não há dados estatísticos.

Biografia do Autor

Paulo Vitor da Silva Santiago, Federal University of Ceará (UFC)

Doutoranda em Ensino de Ciências e Matemática pelo Programa de Pós-Graduação em Docência da Rede Nordeste de Ensino (RENOEN), polo da UFC. Mestre em Ciências e Matemática pelo Programa de Pós-Graduação (PPGENCIMA) da Universidade Federal do Ceará (UFC) na linha de pesquisa Tecnologias Digitais (DT) no Ensino de Ciências e Matemática. Especialização em Ensino da Matemática (ISEIB), Especialização em Nutrição Clínica e Desportiva (UNIQ), Especialização em Docência na Educação Profissional, Científica e Tecnológica (IFCE), Especialização em Gestão Escolar: Administração, Supervisão e Orientação (ÚNICA), Especialização em Tecnologias Digitais e Inovação em Educação (ÚNICA), Especialização em Docência no Ensino Superior (ÚNICA), Especialização em Matemática, suas Tecnologias e o Mundo do Trabalho (UFPI), Especialização em Educação Digital (SENAI-SC). Especialização em Ensino de Matemática: Anos Finais do Ensino Fundamental (UFPI), Graduação em Matemática (IFCE), Tecnóloga em Alimentos (CENTEC), Graduação em Filosofia (FAERPI), Graduação em Educação Física (UECE). Atualmente é professor de Matemática - SEDUC CE.

Renata Teófilo de Sousa, Federal Institute of Education, Science and Technology of Ceará (IFCE)

Master in Science and Mathematics Teaching from the Federal Institute of Education, Science and Technology of Ceará - IFCE campusFortaleza. Specialist in Mathematics Teaching at Vale do Acaraú State University - UVA, Qualification of Mathematics Teaching in the State of Ceará by the Federal University of Ceará - UFC. Specialisation in Didactics and Active Methodologies for Learning and MBA in School Management - UniAmérica. Graduated in Mathematical Sciences from the State University of Vale do Acaraú - UVA. Experience as a scholarship holder and, later, supervisor of the Institutional Programme for Teaching Initiation Scholarships - PIBID. Effective teacher of the Secretary of Basic Education of the State of Ceará - SEDUC / CE, working in Professional Education, with work aimed at preparing students for the National High School Exam - ENEM and other entrance exams.Reviewer of scientific journals and member of the editorial board. Translator with expertise in English and Spanish. Areas of interest: Didactics of French Mathematics, GeoGebra, Educational Technology, Active Methodologies.

Francisco Régis Vieira Alves, Federal Institute of Education, Science and Technology of Ceará (IFCE)

Graduated in Bachelor of Mathematics from the Federal University of Ceará (1998), graduated in Mathematics from the Federal University of Ceará (1997), Master in Pure Mathematics from the Federal University of Ceará (2001) and Master in Education, with emphasis on Mathematics Education, from the Federal University of Ceará (2002). PhD with emphasis on Mathematics teaching (UFC - 2011). He is currently a TITLE professor at the Federal Institute of Education Science and Technology of the state of Ceará / IFCE - 40h / a with DE, of the Mathematics Degree course and CNPq Research Productivity Fellow - Level 2 (2020 - 2026). Professor of the Doctorate in Association in Postgraduate Network in Teaching (RENOEN) and the Academic Master in Science and Mathematics Teaching of the Professional Master in Professional Technological Education PROEPT-IFCE. He has experience in the area of Mathematics and working mainly on the following topics: Didactics of mathematics, History of Mathematics, Real Analysis, Philosophy of Mathematics and Technologies applied to the teaching of mathematics for the higher level.

Referências

Almouloud, S. A. (2007). Fundamentos da Didática da Matemática. Editora UFPR.

Alves, F. R. V. (2020). Situações didáticas olímpicas (SDOs): ensino de olimpíadas de matemática com arrimo no software GeoGebra como recurso na visualização. Revista Alexandria, 13(1), 319-349. https://doi.org/10.5007/1982-5153.2020v13n1p319

Alves, F. R. V. (2021). Situação Didática Olímpica (SDO): Aplicações da Teoria das Situações Didáticas para o ensino de olimpíadas. Revista Contexto & Educação, 36(113), 116-142. https://doi.org/10.21527/2179-1309.2021.113.116-142

Artigue, M. (1994). Engineering as a framework for the conception of teaching products. In: R. Biehler, R. Scholz, R. Strässer & B. Winklemann. Didactics of Mathematics as a scientific discipline. Kluwer Academic Publishers.

Artigue, M. (1996). Engenharia Didática. In: J. Brun. Didáctica das matemáticas. Instituto Piaget. Horizontes Pedagógicos, 193-217.

Artigue, M. (2013). L’impact curriculaire des technologies sur l’éducation mathématique. Revista de Educação Matemática e Tecnologia Iberoamericana, 4(1), 1-4. https://revistas.ucr.ac.cr/index.php/cifem/article/view/14733/13978

Barquero, B. & Bosch, M. (2015). Didactic Engineering as a Research Methodology: From Fundamental Situations to Study and Research Paths. In: Watson, A., Ohtani, M. (eds). Task Design In Mathematics Education. New ICMI Study Series. Springer, Cham. https://doi.org/10.1007/978-3-319-09629-2_8

Brousseau, G. (1986). Théorisation des phénomènes d’enseignement des Mathématiques. Thése (Doctorat d´Etat), Université Bourdeaux I.

Brousseau, G. (2008). Introdução ao Estudo das Situações Didáticas: conteúdos e métodos de ensino. Ática.

Cury, F. G. (2019). Análise de um livro didático de Geometria plana apoiada na hermenêutica de profundidade. Zetetiké, 27. https://doi.org/10.20396/zet.v27i0.8654251

Hohenwarter, M. (2014). Multiple representations and GeoGebra-based learning environments. Union - Revista Iberoamericana de Educación Matemática, 39, 11–18. http://revistaunion.org/index.php/UNION/article/view/697

Hohenwarter, M. & Preiner, J. (2007). Dynamic Mathematics with GeoGebra. The Journal of Online Mathematics and Its Applications, 7.

Kangaroo Mathematics Contest. (2023). Test 2023, Level J. https://www.cangurudematematicabrasil.com.br/concurso/provas-anteriores.html.

Kenski, V. M. (2012). Educação e Tecnologias: o novo ritmo da informação. 8th edition. Papirus.

Leivas, J. C. P., Bettin, A. D. H., & Pretto, V. (2018). O GEOGEBRA 3D NA CONSTRUÇÃO DA PIRÂMIDE A PARTIR DE SEU TRONCO: REGISTROS DE REPRESENTAÇÃO SEMIÓTICA. Didáctica Y Educación, 9(1), 241–258. https://revistas.ult.edu.cu/index.php/didascalia/article/view/744

Mendes, M. A. S. & Araújo, M. L. S. (2015). Projeto: A Matemática transformando vidas e promovendo inclusão de alunos surdos. Proceedings of II Congresso Paranaense de Educação Especial. I Fórum Permanente de Educação Especial do Sul e Sudeste do Pará. Belém, 2015. https://cpee.unifesspa.edu.br/images/AnaisIICpee/MariaAparecidadeSouza Mendes.pdf

Osypova, N. V. & Tatochenko, V. I. (2021). Improving the learning environment for future mathematics teachers with the use application of the dynamic mathematics system GeoGebra AR. AREdu 2021: 4th International Workshop on Augmented Reality in Education, 2021, Kryvyi Rih, Ukraine. http://ds.knu.edu.ua/jspui/bitstream/123456789/3767/1/paper10.pdf

Santiago, P. V. S. & Alves, F. R. V. (2021). Situações didáticas na Olimpíada Internacional de Matemática. Revista de Ensino de Ciências e Matemática, 12(6), 1-24. https://doi.org/10.26843/rencima.v12n6a29

Teixeira, A. S. M. & Mussato, S. (2020). Contribuições do software GeoGebra nas aulas com sólidos geométricos de faces planas nos anos iniciais do ensino fundamental. REAMEC - Rede Amazônica de Educação em Ciências e Matemática, 8(3), 449–466. https://doi.org/10.26571/reamec.v8i3.10835

Zabala, A. (1998). A Prática Educativa: Como educar. Porto Alegre.

Wagner, E. (2015). Uma introdução às construções geométricas. IMPA.

Publicado

2025-04-25

Como Citar

Santiago, P. V. da S., Renata Teófilo de Sousa, & Francisco Régis Vieira Alves. (2025). Concurso Canguru de Matemática, GeoGebra e Educação Inclusiva: experiência didática baseada em problemas de olimpíadas. Didáctica Y Educación ISSN 2224-2643, 16(2), 65–88. Recuperado de https://revistas.ult.edu.cu/index.php/didascalia/article/view/1832

Edição

Seção

Artículos

ARK